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Dispiroketals in Synthesis (Part 4). -1 Enantioselective Desymmetrization of 
Glycerol Using a C2-Symmetric Disubstituted his-Dihydropyran. 

Geert-Jan Boons, David A. Entwiatle, Steven V. L.ey* and Martin Woods 

University Chemical Laboratory Lensfield Rod Cambridge, CB2 IEW, UK 

Abstract: Glycerol may be simultaneously protected and enantioselectively desymmetrised by dispimketal 

formation with (S,s)-2,2’-dimethyl-3.3’,4.4’-tetrahydro-6,6’-bi-2H-pyran 1. 

We wish to describe a new concept which accomplishes the simultaneous protection and 

enantioselective desymmetrixation of meso-polyols. This process is illustrated here by the reaction of glycerol 

with the chit-al C~symmetric dimethyl btidihydropymn derivative 1. 
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pure form. The reaction of 1 with glycerol, in the presence of catalytic camphorsulphonic acid in boiling 

toluene, proceeded with complete diastereoselectivity, to give the dispiroketal47, which was confinned by 

preparation of the corresponding Mosher’s ester.8 
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The enantioselective desymmetrisation of glycerol is explained as follows. The absolute 

stereochemistry of the spiro centres (S,R) is controlled by a combination of multiple anomeric effects and the 

absolute configuration at the site of substitution of the methyl groups, which adopt an equatorial orientation. 

Due to steric effects, the hydroxymethylene substituent on the dioxane ring adopts an equatorial orientation. 

These factors result in the exclusive formation of the glycerol derivative 4 with (S) stereochemistry at C-2 of 

the glycerol unit. 

The (S,S)-dimethyl his-dihydropyran derivative 1 was prepared5 from the readily available sulphone 2 

(Scheme 2). Thus, treatment of the sulphone 2 with butyl lithium followed by quench of the corresponding 

anion with tributyltin chloride and elimination of phenylsulphinic acid, with Hiinig’s base, afforded the 

stannane 3 in good yield. Transmetallation6 of 3 with butyl lithium followed by palladium catalysed homo- 

coupling gave the required his-dihydropyran 1.7 Direct coupling of the stannane 3 with catalytic palladium (II) 

chloride bis-acetonitrile complex in NJ-dimethylformamide also gave 1, however, this process was lower 

yielding. 
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i. BuLi, THF, -78” C followed by BusSnCI, -20” C, aqueous work-up then Hunig’s base, CHC13, A, 2h, 75%. 

ii. BuLi, THF, -78” C then addition of 2% PdC&(hkCN)2, CuCl2, -78 to 0” C, 2h, than NH&l/NH3 (aq), 80%. 

scheme 2 

Next, we focused our attention on converting 4 into the useful building blocks 5 and 6. Thus, 

treatment of 4 with sodium hydride and benzyl bromide afforded benzyl ether 7. Treatment of 7 with neat 

glycerol and catalytic camphorsulphonic acid gave (R)-1-O-benzyl glycerol 5 together with the returned 

dispiroketal protected glycerol derivative 4 (Scheme 3). As expected compound 4 was again obtained as a 

single diastereoisomer thereby providing an extremely efficient recycling process. Thus, during the 

deprotection step the chiral protecting group is preserved. Compound 5 was converted into the analogous 

isopropylidene derivative, the optical rotation and NMR data of which were in full agreement with literature 
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Furthermore, it should be noted that 5 is a key compound in the preparation of glyco-, phospho- and ether 

lipids, some of which show remarkable biological activities. 

Finally, oxidation of 4 with pyridinium chlomchmmate in dichloromethane gave, after silica gel column 

chromatography, the aldehyde 6 together with some of the corresponding hydrate. Stirring the mixture of 

compounds for 16 hours in chloroform, at room temperature, gave a clean sample of the aldehyde 67 upon 

evaporation of the solvent (Schenre 4). 

Scheme 4 

In conclusion, this work presents a potentially powerful new method and concept for the 

desymmetrixation of meso-polyols using asymmetric dispoke protection methods. This process could have 

considerable synthetic application and further examples are under investigation. Furthermore, the use of 

various Cz-substituted b&dihydropyran derivatives with different mactivities; especially towards deprotection, 

will be mported in due course. 
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